10,866 research outputs found

    An Approximate Bayesian Long Short-Term Memory Algorithm for Outlier Detection

    Full text link
    Long Short-Term Memory networks trained with gradient descent and back-propagation have received great success in various applications. However, point estimation of the weights of the networks is prone to over-fitting problems and lacks important uncertainty information associated with the estimation. However, exact Bayesian neural network methods are intractable and non-applicable for real-world applications. In this study, we propose an approximate estimation of the weights uncertainty using Ensemble Kalman Filter, which is easily scalable to a large number of weights. Furthermore, we optimize the covariance of the noise distribution in the ensemble update step using maximum likelihood estimation. To assess the proposed algorithm, we apply it to outlier detection in five real-world events retrieved from the Twitter platform

    Optimal Walking of an Underactuated Planar Biped with Segmented Torso

    Get PDF
    Recently, underactuated bipeds with pointed feet have been studied to achieve dynamic and energy efficient robot walking patterns. However, these studies usually simplify a robot torso as one link, which is different from a human torsos containing 33 vertebrae. In this paper, therefore, we study the optimal walking of a 6-link planar biped with a segmented torso derived from its 5-link counterpart while ensuring that two models are equivalent when the additional torso joint is locked. For the walking, we suppose that each step is composed of a single support phase and an instantaneous double support phase, and two phases are connected by a plastic impact mapping. In addition, the controlled outputs named symmetry outputs capable of generating exponentially stable orbits using hybrid zero dynamics, are adopted to improve physical interpretation. The desired outputs are parameterized by B´ezier functions, with 5-link robot having 16 parameters to optimize and 6-link robot having 19 parameters. According to our energy criterion, the segmented torso structure may reduce energy consumption up to 8% in bipedal walking, and the maximum energy saving is achieved at high walking speeds, while leaving the criteria at low walking speeds remain similar for both robots.China CSC LCF

    Measure of genuine multipartite entanglement with computable lower bounds

    Full text link
    We introduce an intuitive measure of genuine multipartite entanglement which is based on the well-known concurrence. We show how lower bounds on this measure can be derived that also meet important characteristics of an entanglement measure. These lower bounds are experimentally implementable in a feasible way enabling quantification of multipartite entanglement in a broad variety of cases.Comment: 5 pages, 2 figure

    Full evolution of low-mass white dwarfs with helium and oxygen cores

    Get PDF
    We study the full evolution of low-mass white dwarfs with helium and oxygen cores. We revisit the age dichotomy observed in many white dwarf companions to millisecond pulsar on the basis of white dwarf configurations derived from binary evolution computations. We evolve 11 dwarf sequences for helium cores with final masses of 0.1604, 0.1869, 0.2026, 0.2495, 0.3056, 0.3333, 0.3515, 0.3844, 0.3986, 0.4160 and 0.4481 M. In addition, we compute the evolution of five sequences for oxygen cores with final masses of 0.3515, 0.3844, 0.3986, 0.4160 and 0.4481 M. A metallicity of Z = 0.02 is assumed. Gravitational settling, chemical and thermal diffusion are accounted for during the white dwarf regime. Our study reinforces the result that diffusion processes are a key ingredient in explaining the observed age and envelope dichotomy in low-mass helium-core white dwarfs, a conclusion we arrived at earlier on the basis of a simplified treatment for the binary evolution of progenitor stars. We determine the mass threshold where the age dichotomy occurs. For the oxygen white dwarf sequences, we report the occurrence of diffusion-induced, hydrogen-shell flashes, which, as in the case of their helium counterparts, strongly influence the late stages of white dwarf cooling. Finally, we presensent our results as a set of white dwarf mass–radius relations for helium and oxygen cores.Fil: Panei, Jorge Alejandro. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Althaus, Leandro Gabriel. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Chen, X.. Chinese Academy of Sciences; República de ChinaFil: Han, Z.. Chinese Academy of Sciences; República de Chin

    Detection of genuinely entangled and non-separable nn-partite quantum states

    Full text link
    We investigate the detection of entanglement in nn-partite quantum states. We obtain practical separability criteria to identify genuinely entangled and non-separable mixed quantum states. No numerical optimization or eigenvalue evaluation is needed, and our criteria can be evaluated by simple computations involving components of the density matrix. We provide examples in which our criteria perform better than all known separability criteria. Specifically, we are able to detect genuine nn-partite entanglement which has previously not been identified. In addition, our criteria can be used in today's experiment.Comment: 8 pages, one figur

    Ambipolar Graphene Field Effect Transistors by Local Metal Side Gates

    Get PDF
    We demonstrate ambipolar graphene field effect transistors individually controlled by local metal side gates. The side gated field effect can have on/off ratio comparable with that of the global back gate, and can be tuned in a large range by the back gate and/or a second side gate. We also find that the side gated field effect is significantly stronger by electrically floating the back gate compared to grounding the back gate, consistent with the finding from electrostatic simulation.Comment: 4 pages, 3 figure
    corecore